

charlottesville.gov/climate 6/8/2022 Senior Statesmen of Virginia

Susan Elliott City of Charlottesville Climate Protection Program Manager

Climate Action Commitments

- 2006 US Mayors Climate Protection Agreement
 - Comprehensive Plan (2007; 2013; 2018; 2021)
 - Charlottesville City Council Vision 2025: A Green City (2009)
- 2017 Global Covenant of Mayors Commitment

PHASE	CLIMATE ACTION (GHG REDUCTIONS)	CLIMATE ADAPTATION	
PHASE 1: Inventory	Measure city-wide GHG emissions	Identify climate hazards	
PHASE 2: Target	Set a GHG reduction target	Assess climate vulnerabilities	
PHASE 3: Plan	Develop climate action plans to deliver on target	Develop climate adaptation plan	

City of Charlottesville's Climate Protection Program

Charlottesville's Greenhouse Gas (GHG) Emission Goals:

- Reduce GHG emissions 45% by 2030
- Achieve carbon neutrality by 2050

Charlottesville's Greenhouse Gas Emissions are approximately:

RESIDENTIAL GHG

30%

COMMERCIAL GHG

30%

TRANSPORTATION GHG

30%

WASTE GHG

5%

Charlottesville's Greenhouse Gas Emissions are approximately:

95%

Community

5%

Municipal

RESIDENTIAL GHG

30%

COMMERCIAL GHG

30%

TRANSPORTATION GHG

30%

WASTE GHG

5%

City of Charlottesville's Climate Protection Program

THE CITY'S CLIMATE PROGRAM INCLUDES:

- Advancing energy improvements and renewable energy use in buildings throughout our community
- Encouraging use of fuel-efficient and carbon-free ways of getting around town
- Supporting public options for electric vehicle charging stations
- Reducing emissions from waste through composting and landfill diversion

OUR COMMITMENT: By connecting our community with resources and programs that are available, accessible, and affordable, the City's Climate Program aims to support individual action to reduce the impacts of climate change and to help our community thrive.

charlottesville.gov/climate

Emissions Outcomes

Charlottesville Comm	unity GHG	Emissions	by Year
----------------------	-----------	-----------	---------

2011 28,835	2016 92,648	2017	2018	2019
•	92,648			
	11 CONT. 10 CONT. 10 CO.	92,218	90,938	91,205
4,694	16,302	16,687	16,721	16,425
(=)	271	271	271	271
70,003	123,838	117,652	115,046	101,688
372	195	190	208	200
35,405	108,393	100,986	107,699	96,389
(2)	13,556	12,857	15,078	
9,309	355,203	340,861	345,961	30%
	-23%	-26%	-25%	Reduction
	372 35,405 -	372 195 35,405 108,393 - 13,556 39,309 355,203	372 195 190 35,405 108,393 100,986 - 13,556 12,857 39,309 355,203 340,861	372 195 190 208 35,405 108,393 100,986 107,699 - 13,556 12,857 15,078 39,309 355,203 340,861 345,961

^{*} The Commerical Energy Sector includes Municipal and Non-Municipal Government energy consumpt.

Charlottesville's Greenhouse Gas (GHG) **Emission Goals:**

- Reduce GHG emissions 45% by 2030
- Achieve carbon neutrality by 2050

ABOUT

STANDARDS

GUIDANCE

CALCULATION TOOLS

EVENTS

ONLINE TRAINING

NEWS

e and

REVIE

Corporate Standard

GHG Protocol for Cities

Project Protocol

Corporate Value Chain (Scope 3) Standard

Mitigation Goal Standard

Product Life Cycle Standard

Policy and Action Standard

We se manad

GHG Emission Inventories

What are they? And, how are they done?

https://ghgprotocol.org

COUNTRIES AND CITIES

COMPANIES AND ORGANIZATIONS

How GHG Emissions are Calculated

Activity Data

Carbon Intensity

GHG Emissions

How GHG Emissions are Calculated

Activity Data

- Electricity Use
- Vehicle Miles
 Traveled
- Gallons of Gasoline
- Tons of Waste

Carbon Intensity

Amount of CO₂e per unit

GHG Emissions

Amount of CO₂e released into the air

How GHG Emissions are Calculated

Activity Data

Quantity:

- Electricity Use
- Vehicle Miles Traveled
- Gallons of Gasoline
- Tons of Waste

Carbon Intensity

Amount of CO₂e per unit

Amount of CO₂e released into the air

the Air

Remove Emissions from

Reduce Emissions Released into the Air

Reducing GHG Emissions

Activity Data

Quantity:

- Electricity Use
- Vehicle Miles
 Traveled
- Gallons of Gasoline
- Tons of Waste

Carbon Intensity

GHG Emissions

Amount of CO₂e per unit

Amount of CO₂e released into the air

Emission Reduction Actions

- Reduce Induced Demand
- Increase Equipment Efficiency
- Conservation Behaviors

- Switch to Lower Carbon Fuels
- Renewables

- Sequestration
- Carbon Farming
- Carbon Capture

Strategy Considerations for Buildings

Current, Upcoming, and Potential Funding Routes

New Housing & New Construction (emissions additions)

Proactive retrofits vs. at point of Equipment Replacement

Policy Priorities:

ex. Small Number of Big Buildings, or Large Number of Small Buildings

Split Incentive (between Property Owners and Renters)

Lifetime Savings vs. Upfront Costs

Resilience, Adaptation, Quality of Life benefits

Strategy Considerations for Transportation

Land Use, Transportation, Natural Resources Planning

New Construction and Housing

- · Street Network & Connections
- Street Design
- · EV-Ready Standards
- · Parking Access (EVs and bikes)

Lifetime Savings vs. Upfront Costs

Split Incentive

Resilience, Adaptation, Quality of Life benefits

Policy Priorities:

- · ex. Looking ahead: EV market & current new housing, charging options
- · ex. Reliable & connected walkable/bikeable network
- · ex. Zoning density & transit ridership (current, future)

Current, Upcoming, and Potential Funding Routes

Stay In Touch

Climate Action News Flashes – Sign Up!

Subscribe to receive emails or texts when new content and events are added:

charlottesville.gov/notifyme

Climate Planning webpage:

- Workshop recordings
- Informational materials
- Future events
- Contact form

charlottesville.gov/climateplan

Presentation for Senior Statesmen of Virginia

Albemarle County Climate Protection Program

Gabe Dayley

Climate Protection Program Manager gdayley2@albemarle.org
albemarle.org/climate | albemarle.org/stewardship

Agenda

Climate Protection Program Overview

Climate Action & Comprehensive Plan

How You Can Get Involved

Climate Protection Program Overview

Climate Action Plan

- Adopted in 2020
- Key themes:
 - Health
 - Economy
 - Environment
 - Equity
- Targets:

Albemarle County Climate Action Plan (2020)

- Reduce emissions by 45% from 2008 levels by 2030
- Achieve zero net emissions by 2050

Climate Action Plan

Renewable Energy Sourcing

Greenhouse Gas Emissions and Targets

Current Program Activities

Climate Action Plan Implementation

- Prioritize communityoriented actions
- Local Government Sustainable Operations Policies
- 2020 Greenhouse Gas Emission Inventory

Climate Adaptation & Resilience Planning

- Vulnerability & Risk Assessment
- Planning Process
- Topics:
 - Extreme Precipitation
 - Extreme Heat
 - Drought & Wildfire
 - Disease & Pestilence

Climate Action and the Comprehensive Plan Update

Greenhouse Gas Emissions

Greenhouse Gas Emissions

Transportation & Land Use

Means of transportation to work in Albemarle County. Source: U.S. Census, 2015-2019 ACS 5-year: Table S0801.

How can growth management and land use decisions help us increase the percentages of public transit, walking, and biking?

Transportation & Land Use

- 'Complete streets'
- Dense, mixed-use development and affordable housing
- Infill development
- Less parking and more robust transit, bike, ped infrastructure

Greenhouse Gas Emissions

Building Energy Use

How can the Comprehensive Plan promote:

- Electrification
- Solar energy systems
- Adaptive reuse of buildings

Greenhouse Gas Emissions

Conservation & Sequestration

- The County's forests and natural areas are helping us sequestering roughly 950,000 tCO₂e/year.
- How we manage growth can help us:
 - ensure this sequestration continues through conservation and stewardship; and
 - increase sequestration by adding tree canopy.

How You Can Get Involved

Environmental Stewardship Hub

Launched: Earth Day (April 22, 2022)

- Learn about County programs
 - Biodiversity
 - Climate Action
 - Clean Water
 - Reduce Waste

- Resources for community members to act
 - At Home
 - On Your Land
 - In Your Community

Environmental Stewardship Hub

Launched: Earth Day (April 22, 2022)

Link: Environmental Stewardship Hub

Environmental Stewardship Hub

Launched: Earth Day (April 22, 2022)

Link: Environmental Stewardship Hub

Climate Resilience Planning

- Read the Climate Vulnerability & Risk Assessment
 - Examines the impacts of local hazards exacerbated by climate change on the people, natural environment, built environment, and economy specific to Albemarle County.
 - Albemarle.org/climate → "Quick Links"
- Participate in community process to draft a Climate Adaptation and Resilience Plan

Engage AC44

- Check out the <u>AC44 website</u> to learn about Planning for Growth.
- Read the <u>Background Report</u> to learn more about how growth management and climate action are connected.
- Complete the survey to share your thoughts on the current growth management policy and what should be prioritized in a policy update.
- Stay tuned for more opportunities to participate in June!

UVA SUSTAINABILITY FRAMEWORK

STEWARD our resources on Grounds and beyond by living our values through our actions and operations

ENGAGE in our community, serve our community, and build sustainability awareness

DISCOVER new solutions to global challenges through research, curriculum, and using the Grounds as a learning tool

2030 UVA SUSTAINABILITY PLAN GOALS

Context – Higher Education

Background/History

UVA Sustainability Annual Reports

2020-2021 Annual Report

2019-2020 Annual Report

2018-2019 Annual Report

2017-2018 Annual Report

2016-2017 Annual Report

2015-2016 Annual Report

2014-2015 Annual Report

Quarterly Sustainability Updates

Sustainability Update June 2020

Sustainability Update June 2019

Sustainability Update March 2019

Sustainability Update December 2018

Sustainability Update June 2018

Sustainability Update March 2018

Sustainability Update December 2017

Sustainability Update June 2017

Sustainability Update March 2017

UVA Greenhouse Gas Reports

UVA Greenhouse Gas Report CY2020

UVA Groenhouse Gas Report CY2019

UVA Greenhouse Gas Report CY2018

UVA Greenhouse Gas Report CY2017

UVA Greenhouse Gas Report CY2016

UVA Groenhouse Gas Report CY2015

UVA Groenhouse Gas Report CY2014

UVA's Carbon Footprint: Neutrality by 2030 - Progress

UVA 2020 Carbon Footprint

- Goal: Reduce emissions to 0 by 2030.
- In CY2010, the baseline year, UVA's footprint was 291,123 MTCDE.
- As of CY2020, UVA decreased its footprint to 163,327 MTCDE (a 43.9% reduction).
- Since 2010, UVA's population has increased 20.1% and square footage has increased 20.6%. Despite this, UVA has reduced its emissions in half per person and per square foot.

UVA's Carbon Footprint: Neutrality by 2030 - Progress

- We anticipate continued growth in both square footage and population. The estimated footprint in 2030, if UVA were to stop all strategies, is 266,600 MTCDE.
- This includes anticipated growth in emissions of 60,000-70,000 MTCDE (4 million square feet added).
- If we continue existing strategies, we could eliminate 56% of our projected 2030 emissions. This is not enough to counteract growth and not enough to continue the reductions required. Additional strategies are needed.

Approach

UVA CLIMATE ACTION PLAN 2030

Alignment					
Equity	Great & Good	Partnerships	Teaching & Research	Patient Care	Accountability

	Focus Areas		
Emissions Source	Supply-driven Focus	Demand-driven Focus	
Refrigerants & Fertilizer	Operations		
Fuel - Transport	Fleet		
Fuel - Buildings		Buildings Engagement	
District Heating	Emanay Cumply	Buildings e	
District Cooling	Energy Supply	Engagement	
Electricity			

ıCommuting ıFood	
Travel	Scope 3 Emissions
Embodied Carbon	i I
Computing	i !

Existing Buildings: Deep Energy Retrofits, Smart Labs Program, Smart Clinics Program, Smart Buildings and Controls, Energy Efficient Procurement

New Buildings & Major Renovations: Low Energy Buildings, Zero Energy (or Carbon) Buildings, Building Electrification Space Utilization and Planning

Source Energy: On-site Renewable Energy, Off-Site Renewable Energy, Renewable Combustion Fuel (Biogas, Biomass, Hydrogen), Waste Heat Capture, Energy Storage, Emergency Power/Resiliency

District Energy: Chilled Water Optimization, Hot Water/Steam Optimization, Plant Energy Storage, Plant Waste Heat Capture, Heat Pump Systems/Geo-Exchange (ground source, air source), Deep Geothermal

Fleet: Electric Buses, Electric Vehicles, Electric Vehicle Charging Infrastructure, Hybrid Vehicles, Alternative Fuel Vehicles, Operational Optimization / Right-sizing, Centralized Fleet

Decarbonization Pathways

4 Separate Decarbonization pathways

Path A - Business as Usual

Existing & planned initiatives

Path B – **Building Efficiency**

Aggressive focus on building energy efficiency

Path C – Plant Efficiency & Electrification

Building & heating plant electrification + optimization

Path D – Efficiency, Electrification, & Renewables

"All of the above" strategy with 100% carbon-free energy procurement

Paths A, B, C would rely on RECs and offsets to drive total emissions to "zero" by 2030

	Baseline Demand Strategies	Aggressive Demand Strategies
Baseline Supply Strategies	Path A Business as Usual	Path B Building Efficiency
Aggressive Supply Strategies	Path C Electrification	Path D Efficiency, Electrification, & Renewables

	Path A	Path B	Path C	Path D
Energy Efficiency Retrofits	Partial	Full	Patial	Fut
Smart Labs Program	Partial	Full	Patiel	Full
Smart Clinics Program	None	Partial	None	Full
Low Energy Buildings	Full	Full	Full	Full
Zero Energy Buildings	None	Ful	Norw	Full
On-site Renewable Energy	Partial	Parkel	Full	Full
Off-site Renewable Energy	None	Nono	None	Full
Chilled Water Optimization	Parisal	Parkal	Full	Full
Hot Water & Steam Optimization	Perfel	Perfet	Full	Full
Heating Electrification	Partial	Parkal	Full	Full
Electric Buses	Particl	Parkel	Full	Full
Electric Vehicles	Partal	Parkal	.64	Full
Fleet Optimization	Pariel	Parkel	Full	Full
Combined Operations Strategies	Partial	Full	Patial	Full
Virginia Clean Economy Act	Fell	Fell	THE	THE

Climate Action Plan – Plan Strategies, Relationship to STES

POTENTIAL EMISSIONS REDUCTION STRATEGIES

	Low Energy Buildings			
	Smart Labs Program			
	Energy Efficiency Retrofits	Building Efficiency		
	Smart Clinics Program			
	Zero Energy Buildings			
	Building Electrification			
ſ	Off-site Renewable Energy			
	Thermal Energy Strategies: Heating Electrification Hot Water & Steam Optimization Chilled Water Optimization	Energy Supply: Strategic Thermal Energy Study		
	Chilled Water Optimization			
	On-site Renewable Energy			
	Electric Buses			
	Electric Vehicles	Fleet		
	Fleet Optimization			
	Combined Operations Strategies	Operations (e.g. fertilizer, refrigerants, behavior, training)		
Virginia Clean Economy Act		Greener electric grid (100% carbon-free electricity by 2045)		
	<u> </u>			

Carbon Neutral by 2030: Recommended/Possible Reduction Strategies

- Chart represents UVA's total anticipated footprint (including growth): 266,600 MTCDE.
- Slices represent the estimated reductions possible for each strategy.
- Energy supply strategies (in orange) represent an estimated 40% of the emissions reductions.
 These are covered in the Strategic Thermal Energy Study and will be refined through the STES process.

Existing Buildings

Clark Hall's Energy-Savings Efforts Earn UVA Building National Recognition

Jan 18, 2019 | Lorenzo Perez / Senior Writer

Home to the University of Virginia's Department of Environmental Sciences and three floors of environmental research labs, Clark Hall served as an unsurprising candidate to lead UVA's energy conservation efforts by example.

UVA has >500 existing buildings

- UNESCO World Heritage Site
- R1 Research University
- Level 1 Trauma Center

UVA Building Efficiency Upgrade Program

- 75 retrofits and counting
- \$55M in energy savings, \$21M invested
- 20,000 MtCO₂e/year savings
- 13% carbon footprint reduction

New Construction

UVA Green Building Standards (low energy targets + fossil-fuel free + solar-ready construction, etc.) + LEED certification 74 LEED buildings at UVA, >4 million sf (80 football fields)

Evaluating Performance

University-Wide

- Building metering
- Annual reporting
- Post occupancy survey report with building performance data and thermal comfort survey

APPENDIX H: Normalized Summary of Results - Rotunda

For this energy and water analysis, the Rotunda was benchmarked against buildings with similar primary uses, location and infrastructure. In 2018, the Rotunda performed below the average Energy Use Intensity (EUI) of the benchmarked buildings (93.3 kbtu per GSF) with approximately 77.3 kBtu per GSF. It also performed below its LEED modeled EUI.

Figure 1: Rotunda Energy Use Intensity (kBtu/GSF) with Benchmarks

Figure 2: Rotunda Water Use Intensity (Gallons/GSF) with Benchmarks

In 2018, the Rotunda's total utility costs per GSF were smaller than the average of benchmarked buildings. Most notably, the Rotunda reported the smallest chilled water and electricity costs per GSF.

Figure 3: Rotunda Utility Costs by Square Foot (\$\$/G\$F) with Benchmarks

Renewable Energy

UVAToday

VIDEOS

UNIVERSITY TRANSIT SERVICES BEGINNING TO GO ELECTRIC WITH NEW BUSES

1943 will begin to trade that to certain electric cuses with four new busine menuteros and by Proteins (Contributed).

Trending

Former UVA Athletes Reveal Mental Gealth Battles in Student Produced Documentary work :

Dungous & Dregons and Burgers: 'Ready Bad Dulcomes' (when We Don') Group Practicus enes

Hoo? What: Where!" Try

GREEN FLEET

The University of Virginia Facilities Management Fleet recently earned the Sustainable Fleet Accreditation, recognizing its efforts to build a fleet of cleaner and more sustainable vehicles.

UVI. Revitage Management employees who assisted with the department coming the Sustainable Ricet Approximation (Health and North American Lands). Mark States, Date States Approx. Charles States, Charles States Approx. Charles Sta

The University of Virginia Facilities Management Fleet recently earned the <u>Sustainable Fleet Association</u>, becoming the only active university fleet in Virginia to receive this designation.

"It is exciting to be recognized for our offerts to reduce the kinescraity of Violetic's earlier feorgries and lewer groundouse gas emissions," said

Sustainability Advocates, Eco-Leaders, Zero Waste Ambassadors, Student Employees

Student Leadership

ABOUT THE DECARBONIZATION ACADEMY THE EXPERIENCE

The Teaching & Research Sub-Committee of the University Sustainability Committee, with support from the Environmental Resilience Institute (ERI), is pleased to announce the launch of the inaugural Summer Decarbonization Academy. The Academy will occur June 13 to August 5, 2022 and provide a hands-on learning experience for rising thirdyears, fourth-years, and graduate students currently enrolled in any UVA program interested in working towards UVA's goals of being and carbon-neutral by 2030 and fossil fuel-free by 2050. Student participants will receive \$5000 for the summer.

Participants will engage with faculty and staff through the program's two signature components. First, participants will complete a hands-on, individual decarbonization learning experience ("project"). Second, participants will complete group-based shared learning activities to develop connections among the fellows and foster dissemination of cutting-edge content.

Connect with Us

SOCIAL MEDIA

@sustainableuva on Twitter & Instagram Facebook: UVA Sustainability

Social media

Websites

WEBSITES

sustainability.virginia.edu eri.virginia.edu uvastudco.com/sustainability uvagreendining.com/

NEWSLETTERS

UVA Sustainability
Newsletter
ERI Newsletter

News letters

Reports

REPORTS

Annual Reports
Action Plans
Zero Waste Guide
Green Living Guide